Neonatal stress and attenuation of the hypercapnic ventilatory response in adult male rats: the role of carotid chemo- and baroreceptors
نویسندگان
چکیده
Neonatal maternal separation (NMS) is a form of stress which disrupts respiratory control development. Awake adult male rats previously subjected to NMS show a ventilatory response to hypercapnia (HCVR; FICO2 = 0.05) 47% lower than controls; however, the underlying mechanisms are unknown. To address this issue, we first tested the hypothesis that carotid bodies contribute to NMS-related attenuation of the HCVR by using carotid sinus nerve section or FIO2 manipulation to maintain PaO2 constant (iso-oxic) during hypercapnic hyperpnea. We then determined whether NMS-related augmentation of baroreflex sensitivity contributes to the reduced HCVR in NMS rats. Nitroprusside and phenylephrine injections were used to manipulate arterial blood pressure in both groups of rats. Pups subjected to NMS were separated from their mother 3h/day from post-natal days 3 to 12. Control rats were undisturbed. At adulthood, rats were anesthetised (urethane (1g/kg) + isoflurane (0.5%)) and diaphragmatic electromyogram (dEMG) was measured under baseline and hypercapnic conditions (PaCO2: 10 Torr above baseline). The relative minute activity response to hypercapnia of anesthetised NMS rats was 34% lower than controls. Maintaining PaO2 constant during hypercapnia reversed this phenotype; the HCVR of NMS rats was 45% greater than controls. Although the decrease in breathing frequency during baroreflex activation was greater in NMS rats, the change observed within the range of pressure change observed during hypercapnia was minimal. We conclude that NMS-related changes in carotid body sensitivity to chemical stimuli and/or its central integration is a key mechanism in the attenuation of HCVR by NMS.
منابع مشابه
Neonatal stress and attenuation of the hypercapnic ventilatory response in adult male rats: the role of carotid chemoreceptors and baroreceptors.
Neonatal maternal separation (NMS) is a form of stress that disrupts respiratory control development. Awake adult male rats previously subjected to NMS show a ventilatory response to hypercapnia (HCVR; Fi(CO(2)) = 0.05) 47% lower than controls; however, the underlying mechanisms are unknown. To address this issue, we first tested the hypothesis that carotid bodies contribute to NMS-related atte...
متن کاملNeonatal maternal separation induces sex-specific augmentation of the hypercapnic ventilatory response in awake rat.
Neonatal maternal separation (NMS) is a form of stress that exerts persistent, sex-specific effects on the hypoxic ventilatory response. Adult male rats previously subjected to NMS show a 25% increase in the response, whereas NMS females show a response 30% lower than controls (8). To assess the extent to which NMS affects ventilatory control development, we tested the hypothesis that NMS alter...
متن کاملEffect of ellagic acid on oxidative stress duo to brain ischemia/hypoperfusion in male rat
Background & Aim: Free radicals are produced in ischemic processes. Nerve damage caused by free radicals may play a role in neurological diseases and antioxidants are protective activity. Ellagic acid is a polyphenol compound with antioxidant properties which is found in fruits like pomegranate, blackberry, and all types of mulberry. This study aimed to evaluate the effect of 14 days of oral ad...
متن کاملEffect of ellagic acid on oxidative stress duo to brain ischemia/hypoperfusion in male rat
Background & Aim: Free radicals are produced in ischemic processes. Nerve damage caused by free radicals may play a role in neurological diseases and antioxidants are protective activity. Ellagic acid is a polyphenol compound with antioxidant properties which is found in fruits like pomegranate, blackberry, and all types of mulberry. This study aimed to evaluate the effect of 14 days of oral ad...
متن کاملStress-induced attenuation of the hypercapnic ventilatory response in awake rats.
To test the hypothesis that stress alters the performance of the respiratory control system, we compared the acute (20 min) responses to moderate hypoxia and hypercapnia of rats previously subjected to immobilization stress (90 min/day) with responses of control animals. Ventilatory measurements were performed on awake rats using whole body plethysmography. Under baseline conditions, there were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010